Mechanotransduction in cells.

نویسنده

  • Wolfgang H Goldmann
چکیده

Cell-matrix and cell-cell adhesions critically influence cell metabolism, protein synthesis, cell survival, cytoskeletal architecture and consequently cell mechanical properties such as migration, spreading and contraction. An important group of adhesive transmembrane receptors that mechanically link the ECM (extracellular matrix) with the internal cytoskeleton are integrins which are intimately connected with the FAs (focal adhesions) which consists of many proteins. The transient formation of FAs is greatly augmented either through externally applied tension to the cell or internally through myosin II-driven cell contractility. Exactly which protein(s) within FAs sense, transmit and respond to mechanical stress is currently debated and numerous candidates have been proposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of CD98 Expression in Normal and Osteoarthritic Human Articular Chondrocytes

Background: Recent studies have provided evidence that integrins play roles in recognition of mechanical stimuli and its translation into a cellular response. Integrin signaling may be regulated by a number of mechanisms including accessory proteins such as CD98 (4F2 antigen). Objectives: To determine CD98 expression by human articular chondrocytes and its involvement in human articular mechano...

متن کامل

CD147 (Extracellular Matrix Metalloproteinase Inducer-EMMPRIN) Expression by Human Articular Chondrocytes

Background: Integrins are a family of transmembrane proteins that allow communication between the extracellular matrix and the interior of cells. Chondrocytes, cells of articular cartilage, express integrins and these molecules appear to have a variety of roles including mechanotransduction. Integrins are known to associate with a number of accessory molecules such as CD147 that may act to regu...

متن کامل

Magneto-mechanical Stimulation of Bone Marrow Mesenchymal Stromal Cells for Chondrogenic Differentiation Studies

Mechanical interaction of cells and their surroundings are prominent in mechanically active tissues such as cartilage. Chondrocytes regulate their growth, matrix synthesis, metabolism, and differentiation in response to mechanical loadings. Cells sense and respond to applied physical forces through mechanosensors such as integrin receptors. Herein, we examine the role of mechanical stimulation ...

متن کامل

Mechanotransduction by Hair Cells: Models, Molecules, and Mechanisms

Mechanotransduction, the transformation of mechanical force into an electrical signal, allows living organisms to hear, register movement and gravity, detect touch, and sense changes in cell volume and shape. Hair cells in the inner ear are specialized mechanoreceptor cells that detect sound and head movement. The mechanotransduction machinery of hair cells is extraordinarily sensitive and resp...

متن کامل

Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes.

Inner ear hair cells convert the mechanical stimuli of sound, gravity, and head movement into electrical signals. This mechanotransduction process is initiated by opening of cation channels near the tips of hair cell stereocilia. Since the identity of these ion channels is unknown, and mutations in the gene encoding transmembrane channel-like 1 (TMC1) cause hearing loss without vestibular dysfu...

متن کامل

Live cell imaging of mechanotransduction.

Mechanical forces play important roles in the regulation of cellular functions, including polarization, migration and stem cell differentiation. Tremendous advancement in our understanding of mechanotransduction has been achieved with the recent development of imaging technologies and molecular biosensors. In particular, genetically encoded biosensors based on fluorescence resonance energy tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell biology international

دوره 36 6  شماره 

صفحات  -

تاریخ انتشار 2012